
Fetch Bot Final Report
Term: Spring 2018

Professor: Taehyung Wang

Class: COMP 380 Section 15888

Date submitted: May 18,2018

Group 1 Members:

● Christian Shadd
● Maria Verna Aquino
● Thanh Vu
● Giovanni Orozco
● Joseph Damian



Table of Contents
Project Description 3

(a) Project Overview 3

(b) Purpose of the Project 3

(c) Scope of the Work 3

(d) Stakeholders 4

Requirements and Specification 4

(a) Use Case Diagram and Descriptions 4

(b) Functional Requirements (User and System Requirements) 9

(c) Non-functional Requirements 10

Design 10

(a) System Modeling (five system models) 10

(b) System Architecture and Patterns 13

(c) 4+1 views (using UML Diagrams) 15

(d) Detailed design principles (five principles) 15

(e) Detailed design patterns 16

Testing 16

(a) Non-execution testing (walk-through and inspection) 16

(b) Execution testing (black box testing) 16

Project/Process 16

(a) Open issues 16

(b) Project/Process retrospective 16

Copyright 17



Project Description

(a)Project Overview
The project makes use of the different software design and engineering 
principles learned from COMP 380 in order to make an autonomous bot that is
capable of recognizing images and using path finding algorithms to find a 
path to its target. The bot makes use of neural network libraries to recognize 
objects and makes use of the raspberry pi and arduino uno as its processors 
for image recognition, path finding and movement.

Main (Includes API Docs): https://cshadd.github.io/fetch-bot/
GitHub: (Includes API Code): https://github.com/cshadd/fetch-bot/
License: https://github.com/cshadd/fetch-bot/blob/master/LICENSE

(b)Purpose of the Project
To create a robot that will demonstrate the use of artificial intelligence 
through image processing, pathfinding, and feedback mechanisms.

(c) Scope of the Work
This project will consist of creating an autonomous bot that can detect a 
target and navigate simple obstacles until it reaches the target. The pre-
alpha version Cinnamon has been completed as of May 2018. The AI robot 
can be controlled remotely via a web interface as well as autonomously by 
inputting a target to find in the web interface. 

(d)Stakeholders
● Professor Taehyung Wang
● Group members
● Classmates

Requirements and Specification

https://github.com/cshadd/fetch-bot/blob/master/LICENSE
https://github.com/cshadd/fetch-bot/
https://cshadd.github.io/fetch-bot/


(a)Use Case Diagram and Descriptions

Start up
 - the robot is started up when the user runs a bash script.

Scenario Start up

Triggering Event User starts the robot up.

Actors User

Related Use 
Cases

N/A

Stakeholders User

Pre-condition Robot Processors is OFF.

Post-condition Robot Processors is turned ON.



Flow of Events

Actor System

1. User turns power 
on.
2. User starts bash 
script.

3. Preform startup diagnostics.
4. Check repo update and compare software 
version.
5. Open interface face.

Exception

Ste
p 

Condition Action Desc

3a Startup diagnostics failure Save to log file and 
notify user.

4a Repo update check and software version
comparison failure

Save to log file and 
notify user.

5a Interface face open failure. Notify user.

Shutdown 
- the robot shuts down when the user clicks the kill button on the web interface.

Scenario Shutdown

Triggering 
Event

User shuts the robot down.

Actors User

Related Use 
Cases

N/A

Stakeholders User

Pre-condition Robot Processors must be ON.

Post-condition Robot Processors is turned OFF.

Flow of Events

Actor System

1. Press KILL switch on web 
interface.

2. Closes all threads and robot 
tasks.



3. Preforms safe shutdown.

Exception

Ste
p 

Condition Action Desc

2a Thread and task 
closure failure.

Save to log file and notify user. Skip 3 
and perform hard shutdown.

3a Safe shutdown 
failure.

System will crash to prevent damage.

Recognize Target
- the robot detects target using its camera.

Scenario Recognize Target

Triggering 
Event

Robot camera detects the target.

Actors User, Camera, Robot Processors

Related Use 
Cases

N/A

Stakeholders User

Pre-condition Target in range of Camera.

Post-condition Robot Processors detect a target.

Flow of Events

Actor System

1. User trains image processing 
neural network for specified target.

2. Neural network will scan 
frames from webcam input.
3. Send confirmation if target is 
found.

Exception

Step Condition Action Desc

2a Neural network failure. Save to log file and notify user.



3a Confirmation failure. Save to log file and notify user.

Calculate Paths
- the robot calculates a path. In autonomous mode, robot generates random paths until a target 
is found. Robot then calculates path to target.

Scenario Calculate Paths

Triggering Event Robot calculates paths.

Actors User, Robot Processors

Related Use 
Cases

Detect Target

Stakeholders User

Pre-condition Robot Processors is in MANUAL mode.

Post-condition Robot Processors calculates graph paths.

Flow of Events

Actor System

1. User sets mode to autonomous. 2. Calculate graph points.
3. Setup graph.
4. Use graph for movement.

Exception

Step Condition Action Desc

2a Graph point calculation 
failure.

Save to log file and notify 
user.

3a Graph setup failure. Save to log file and notify 
user.

Detect Obstacles
- the robot detects obstacles in its path by using its ultrasonic sensors.

Scenario Detect Obstacles



Triggering Event Ultrasonic Sensors detect obstacle.

Actors Ultrasonic Sensors

Related Use 
Cases

Calculate Path

Stakeholders User

Pre-condition Obstacle within Ultrasonic Sensors range.

Post-condition Ultrasonic Sensors detect the obstacle.

Flow of Events

Actor System

1. Ultrasonic Sensors detect 
obstacle.

2. Serial data sent to Robot 
Processors for review. 

Exception

Step Condition Action Desc

2a Serial IO failure. Save to log file and notify user.

Move
- robot moves after receiving a user command, detecting a target/obstacle, or calculating a path.

Scenario Move

Triggering 
Event

Robot Processors has received User command, detected target, 
calculated path, or detected obstacle.

Actors Robot Processors

Related Use 
Cases

N/A

Stakeholders User

Pre-condition Data.

Post-condition Robot Processor will sent movement command to motors.

Flow of Events



Actor System

1. Robot Processors 
have data sent.

2. Validation.
3. If validation checks out, Robot 
Processors will order motor to run.

Exception

Step Condition Action Desc

2a Validation failure. Save to log file and notify user.

3a Motor movement failure. Save to log file and notify user.

(b)Functional Requirements (User and System Requirements)
I. The system shall be able to start up. During start up, the bash script, 

“bash/install.sh” is ran in the terminal. The bash script sets the monitor
to never turn off. The script also kills any existing Java processes and 
starts the jar file which is the main program itself. It then opens up the 
chromium web browser on the monitor. It starts the program that 
keeps the mouse cursor turned off on the monitor to get the screen to 
only display the face of the robot. 

II. The system shall be able to turn off. Once kill the button is pressed on 
the web interface, a log file is created. Serial ports are disconnected 
and the jar file is terminated. 

III. The system must be able to recognize a target. In order to recognize a 
target, the robot is set to autonomous mode. Once the robot is set on 
autonomous mode by clicking the Auto button on the web interface, 
the robot uses the neural network on the raspberry pi to match images
to preloaded data. It processes the image and if a 90% match is 
obtained, the robot reports the image as a target. If any error occurs 
for the neural network or the target being found, the error is saved to a
log file and the user is notified.

IV. The system must be able to calculate a path towards the target. In 
order to calculate the path to the target, the robot is set to Auto mode. 
During auto mode, if the target is not found, it chooses where to go 
next and generates a graph as it moves around. Once the target is 
found, a straight path is generated towards it and is followed. If an 
obstacle is detected, another path is calculated and the graph is 
updated. This repeats until the target is reached. If any error occurs 
during the calculation and setup, the error is saved to a log file and the
user is notified.

V. The system must be able to move. The robot can move in both Manual 
and Auto mode. In order to move during Manual mode, the user can 



choose to press the move buttons: Forward, Left and Right in the web 
interface in order to move the robot. In order to move in Auto mode, 
the user only needs to specify a target from a list of pretrained data in 
the interface. If the motors fail or the processor was not able to receive
data, the error is saved to a log file and the user is notified.

VI. The system must be able to detect obstacles. Data is received from the
sensors and the Arduino uno sends this to the raspberry pi via Serial 
which then gets sent to the jar file in the raspberry pi. The raspberry pi 
processes the data and interprets it into distances that will be sent to 
the web interface.

(c) Non-functional Requirements

I. Robot should have protections against outside intrusions.
II. Robot HTTP Server should have protections against outside intrusions.
III. Robot should receive a command within 3 seconds.
IV. Robot should process image data to at least a 90% match before a 

target is identified.
V. Robot should stop and turn when an obstacle is detected 15-30 cm 

away.

Design

(a)System Modeling (five system models)

I. Context Modeling



II. Process Modeling



III. Interaction Modeling

IV. Behavioral Modeling



V. Structural Modeling

(b)System Architecture and Patterns
The software system for Fetch Bot is hierarchical as the backend uses 
components compiled directly from the kernel and uses drivers from the kernel 
itself. Image processing occurs within the kernel itself as OpenCV uses libraries 
(.so). Serial and I/O is on the backend. There is also the Java Virtual Machine 
running on the front end with a web interface.

Fetch Bot Layered Architecture Pattern





(c) 4+1 views (using UML Diagrams)

(d)Detailed design principles (five principles)
● The open–closed principle (OCP)

Most classes are able to be extended when needed without having to 
modify existing code.

● The Liskov substitution principle (LSP) 
Base classes were used that extended from other classes when needed.

● The interface segregation principle (ISP)
Base and child interfaces were used that encompassed their own needed 



methods. If we needed more methods we extended them from other 
interfaces that made sense to extend from.

● Dependency Inversion Principle (DIP) 
Modules were kept separate and only called upon other modules when 
needed. Low level modules went through other low level modules in a 
stair-like fashion before being called by a high level module. Basically 
there were no skips between module levels.

● Single Responsibility Principle (SRP) 
Each class has its own dedicated job as documented, no two classes do 
the same job. Classes were also separated by packages or application in 
what they need to do.

(e)Detailed design patterns
We used some aspects of the Behavioural Design Pattern.

Testing

(a)Non-execution testing (walk-through and inspection)
Periodic software reviews were done to make sure that the various algorithms
(e.g. Pathfinding) made sense. The group brainstormed and identified 
potential problems in the algorithms. For example, the appropriate distance 
necessary to turn away from an obstacle once detected was discovered 
during an informal walkthrough. 

(b)Execution testing (black box testing)
Constant evaluation from executions were made to test the robot. There was 
a debug mode that allowed for verbosity. There was a utility logger that 
allowed logging to a file including debug messages, warning messages, info 
messages, and error messages thrown by errors or exceptions. The messages
were thoroughly detailed and included stack trace which we used to validate 
the errors.

Project/Process

(a)Open issues 
● Making the OpenCV terminal faster
● Adding GPS feature
● Adding encoders for movement precision
● Creating a full chassis
● Fixing latency



(b)Project/Process retrospective
The SCRUM process could have been modified to account for different 
availabilities of team members. A lighter battery could have been used in 
order to increase torque and allow the bot to move faster. Alternatively, 
stronger motors could have been used. The omni wheels were not necessary 
since only two motors were used and left-right movement would not have 
been possible. The use of regular front wheels could have decreased the 
project cost.

Copyright

LICENSED UNDER MIT:

Copyright (c) 2018 Christian Shadd

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NON INFRINGEMENT. IN NO EVENT
SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 
OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 
ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
DEALINGS IN THE



SOFTWARE.

https://github.com/cshadd/fetch-bot/blob/master/LICENSE

https://github.com/cshadd/fetch-bot/blob/master/LICENSE

	Project Description
	(a) Project Overview
	(b) Purpose of the Project
	(c) Scope of the Work
	(d) Stakeholders

	Requirements and Specification
	(a) Use Case Diagram and Descriptions
	(b) Functional Requirements (User and System Requirements)
	(c) Non-functional Requirements

	Design
	(a) System Modeling (five system models)
	(b) System Architecture and Patterns
	(c) 4+1 views (using UML Diagrams)
	(d) Detailed design principles (five principles)
	(e) Detailed design patterns

	Testing
	(a) Non-execution testing (walk-through and inspection)
	(b) Execution testing (black box testing)

	Project/Process
	(a) Open issues
	(b) Project/Process retrospective

	Copyright

